Communications to the Editor

STUDIES ON FREE RADICAL SCAVENGING SUBSTANCES FROM MICROORGANISMS

II. NEOCARAZOSTATINS A, B AND C, NOVEL FREE RADICAL SCAVENGERS

Sir:

In the course of our screening program for free radical scavenging substances from microorganisms, which are expected to be useful as therapeutic reagents for myocardial and cerebral ischemia^{1,2},

atherosclerosis³⁾ and inflammation⁴⁾, we have isolated, from the culture of *Streptomyces* sp. strain GP 38, novel substances named neocarazostatins A, B and C. These compounds are structurally similar to carazostatin which we reported recently⁵⁾. Neocarazostatins A, B and C have shown strong inhibitory activities against lipid peroxidation induced by free radicals in rat brain homogenates.

The organism which produced neocarazostatins A, B and C was cultivated on a rotary shaker at 27°C for 5 days in 500-ml Erlenmeyer flasks containing 100 ml of a medium consisting of glycerol 3.0%, fish

Fig. 1. Isolation procedures of neocarazostatins A, B and C.

Whole broth (5 liters)	-		
filtered			
Mycelial cake			
extracted with acetone concentrated in vacuo extracted with EtOAc at ph	4 2.0		
EtOAc layer			
concentrated in vacuo			
l Oily material			
partitioned between 10 % ac	MeOH and hexane		
 MeOH layer			
concentrated in vacuo			
Silica gel column			
	`		
eluted with CHCl ₃		eluted with CH	Cl ₃ - MeOH (100:1)
Fraction A	Fr	action B	
evaporated in vacuo	:	evaporated in	vacuo
i Toyopearl HW-40 column	н	PLC	
eluted with MeOH		YMC pack D-O	DS-7, CH ₃ CN - H ₂ O (80:20),
evaporated in vacuo		11 ml/minute,	UV 254 nm
Sephadex LH-20 column eluted with MeOH evaporated in vacuo Neocarazostatin B (7.2 mg)	Fraction C evaporated in var Sephadex LH-20 cold eluted with MeOH evaporated in var Neocarazostatin A (1	Fi cuo umn Si cuo 45.0 mg} T	raction D evaporated in vacuo ephadex LH-20 column eluted with MeOH evaporated in vacuo oyopearl HW-40 column eluted with MeOH
			evaporated in vacuo

Neocarazostatin C (22.6 mg)

	Neocarazostatin A	Neocarazostatin B	Neocarazostatin C
$[\alpha]_{\rm D}^{25}$ (c 0.1 MeOH)	-36°	-24°	-92°
MP (°C, dec)	141~143	55~57	80~82
Molecular formula	$C_{22}H_{27}NO_{4}$	$C_{22}H_{27}NO_{3}$	$C_{23}H_{29}NO_{4}$
MS m/z (M ⁺)	369	353	383
UV λ_{\max}^{MeOH} nm (ε)	230 (43,700), 250 (65,900),	228 (43,700), 249 (65,900),	231 (43,800), 250 (65,800),
	271 (23,800), 292 (26,800),	270 (23,700), 292 (26,800),	271 (23,700), 292 (26,900),
	331 (6,900), 345 (8,400)	331 (6,900), 344 (8,400)	331 (6,900), 345 (8,400)
IR (KBr) v_{max} cm ⁻¹	3440, 2970, 2940, 1620,	3350, 2930, 2880, 1605,	3460, 2920, 1610, 1590,
	1590, 1500, 1480, 1450,	1590, 1495, 1470, 1440,	1500, 1480, 1440, 1410,
	1420, 1310, 1120, 1050,	1400, 1300, 1110, 990,	1310, 1130, 990, 810
	810	800	

Table 1. Physico-chemical properties of neocarazostatins A, B and C.

Table 2. ¹H chemical shifts of neocarazostatins A, B and C in CD₃OD.

Carbon No.ª	Neocarazostatin A	Neocarazostatin B	Neocarazostatin C
5	7.97 (1H, d, J=1.2)	7.97 (1H, d, J=1.3)	8.00 (1H, d, J=1.2)
7	7.09 (1H, dd, J=8.5, 1.2)	7.08 (1H, dd, $J = 8.5$, 1.3)	7.10 (1H, dd, $J = 8.5, 1.2$)
8	7.28 (1H, d, J=8.5)	7.28 (1H, d, $J = 8.5$)	7.30 (1H, d, <i>J</i> =8.5)
10	4.92 (1H, d, J=8.0)	2.93 (1H, dd, $J = 14.5$, 6.7),	4.53 (1H, d, <i>J</i> =7.9)
		3.03 (1H, dd, J = 14.5, 6.5)	
11	4.22 (1H, dq, J = 8.0, 6.4)	4.08 (1H, ddq, J = 6.7, 6.5, 6.2)	4.26 (1H, dq, J = 7.9, 6.4)
12	1.03 (3H, d, J=6.4)	1.21 (3H, d, J=6.2)	1.01 (3H, d, J=6.4)
13	2.42 (3H, s)	2.40 (3H, s)	2.43 (3H, s)
14	3.74 (3H, s)	3.77 (3H, s)	3.76 (3H, s)
15	3.45 (2H, d, <i>J</i> =7.3)	3.45 (2H, d, <i>J</i> =7.3)	3.46 (2H, d, <i>J</i> =7.3)
16	5.41 (1H, t, $J = 7.3$)	5.41 (1H, t, $J = 7.3$)	5.41 (1H, t, $J = 7.3$)
18	1.76 (3H, s)	1.76 (3H, s)	1.76 (3H, s)
19	1.78 (3H, s)	1.78 (3H, s)	1.78 (3H, s)
20			3.25 (3H, s)

^a Referred to Fig. 4.

J = Hz.

meal 2.0% and calcium carbonate 0.2%. The active materials were isolated according to the scheme shown in Fig. 1.

Physico-chemical properties of neocarazostatins A, B and C are shown in Table 1.

Since the UV absorption spectra of neocarazostatins are very similar to that of carazostatin⁵⁾ and those of carbazomycins^{6,7)}, the existence of a carbazole nucleus was suggested in each compound. The ¹H and ¹³C NMR spectra of neocarazostatins are shown in Tables 2 and 3, respectively.

In the ¹³C NMR spectrum, twelve signals due to the carbazole nucleus in neocarazostatin A were almost identical to those of the analogous carbons in the spectrum of carbazomycin B, except for the signals assigned to C-1 and C-6. Furthermore, the signals due to 6-H and 10-CH₃ in the ¹H NMR spectrum of carbazomycin B could not be found in that of neocarazostatin A. These results suggested

that the chromophore of neocarazostatin A could be of the 1,6-disubstituted carbazomycin B type. The ¹H, ¹³C NMR and ¹H-¹H COSY of neocarazostatin A indicated the existence of partial structures of 1, 2 and two methyl groups in it as shown in Fig. 2. The heteronuclear multiple-bond correlation (HMBC) spectrum of neocarazostatin A showed long range couplings of 10-H (CH) to C-1, 2 and 9a, and 15-H (CH_2) to C-5, 6 and 7. Therefore, the attachments of the partial structure 1 to C-1, and 2 to C-6 were confirmed as shown in Fig. 3. Since the HMBC spectrum also provided long range couplings of the 18-CH₃ and 19-CH₃ to C-17, the partial structure 2 was identified as an isoprenyl side chain. From these results, the structure of neocarazostatin A was determined as shown in Fig. 4.

Since the molecular formula of neocarazostatins A and B were deduced to be $C_{22}H_{27}NO_4$ and $C_{22}H_{27}NO_3$, respectively, neocarazostatin B was

Carbon	Neocarazostatin			Carbazomycin
No.ª	А	В	С	Bp
1	114.8 (s)	112.0 (s)	111.2 (s)	109.7 (s)
2	127.7 (s)	127.6 (s)	126.1 (s)	127.8 (s)
3	139.5 (s)	139.7 (s)	139.5 (s)	139.3 (s)
4	145.0 (s)	144.6 (s)	146.0 (s)	143.6 (s)
4a	112.6 (s)	111.5 (s)	112.2 (s)	110.6 (s)
4b	124.0 (s)	124.7 (s)	123.8 (s)	124.3 (s)
5	122.7 (d)	122.7 (d)	122.6 (d)	123.1 (d)
6	132.8 (s)	132.8 (s)	132.9 (s)	119.2 (d)
7	126.1 (d)	125.0 (d)	126.0 (d)	124.8 (d)
8	110.9 (d)	110.8 (d)	110.9 (d)	110.0 (d)
8a	139.6 (s)	139.7 (s)	139.5 (s)	140.7 (s)
9a	138.0 (s)	139.3 (s)	137.5 (s)	137.9 (s)
10	76.5 (d)	38.6 (t)	86.6 (d)	13.3 (q; 1-CH ₃)
11	71.4 (d)	69.0 (d)	70.5 (d)	
12	19.9 (q)	23.0 (q)	19.2 (q)	_
13 (2-CH ₃)	13.2 (q)	13.1 (q)	13.2 (q)	12.8 (q)
14 (3-OCH ₃)	61.4 (q)	61.3 (q)	61.4 (q)	61.3 (q)
15	35.5 (t)	35.5 (t)	35.4 (t)	
16	126.1 (d)	126.1 (d)	126.1 (d)	_
17	132.1 (s)	132.0 (s)	132.0 (s)	_
18	18.0 (g)	17.9 (q)	17.9 (q)	_
19	26.0 (g)	26.0 (q)	26.0 (q)	_
20			56.9 (q)	

Table 3. ¹³C chemical shifts of neocarazostatins A, B and C, and carbazomycin B.

The spectra of neocarazostatins and carbazomycin B were run in CD_3OD and $(CD_3)_2CO$ as a solvent, respectively.

^a Referred to Fig. 4.

- ^b Cited from the data by NAID et al.⁷⁾.
- Fig. 2. Partial structures of neocarazostatin A.

Two methyl groups $\begin{array}{c} 18 \\ -CH_3 \\ -CH_3 \\ \end{array}$

Fig. 3. HMBC experiment of neocarazostatin A (arrows).

proposed to be a deoxy-derivative of neocarazostatin A. In the ¹H and ¹³C NMR spectra of neocarazostatins A and B, the signals due to 10-H ($\delta_{\rm H}$ 4.92, vs. 2.93 and 3.03, respectively) and C-10 ($\delta_{\rm C}$ 76.5 vs. 38.6, respectively) were different between these two compounds. Accordingly neocarazostatin B is 10-deoxyneocarazostatin A.

The ¹H and ¹³C NMR spectra of neocarazostatin C were very similar to those of neocarazostatin A

except for the existence of one methoxy group ($\delta_{\rm H}$ 3.25, $\delta_{\rm C}$ 56.9). The HMBC spectrum of neocarazostatin C revealed the long range coupling of the *O*-methyl protons to C-10. Therefore, neocarazostatin C is 10-OCH₃ derivative of neocarazostatin A and may be an artifact derived from neocarazostatin A.

The structures of the neocarazostatins A, B and C, as determined, are shown in Fig. 4; the relative

Fig. 4. Structures of neocarazostatins A, B and C.

Table 4. Inhibitory effects of neocarazostatins A, B and C and other compounds on lipid peroxidation in rat brain homogenate in the presence of Fe²⁺ and ascorbic acid.

Drug	Conc (µм)	Inhibition (%)
Neocarazostatin A	1.0	99.2
	0.3	12.7
	0.1	0.0
Neocarazostatin B	1.0	100.0
	0.3	40.1
	0.1	2.4
Neocarazostatin C	1.0	100.0
	0.3	36.2
	0.1	0.0
Flunarizine · 2HCl	100	62.7
	30	38.1
	10	8.8
BHT	10	99.4
	3	18.5
	1	0.0

The inhibitory effect of each drug was measured according to the method of KUBO *et al.*⁸⁾ in the presence of Fe²⁺ (10 μ M) and ascorbic acid (100 μ M).

stereochemistry is under study.

The inhibitory effects of neocarazostatins A, B and C on the lipid peroxidation induced by free radicals generated in the presence of Fe²⁺ (10 μ M) and ascorbic acid (100 μ M) in rat brain homogenate was shown in Table 4. IC₅₀ values of neocarazostatin A (0.509 μ M), neocarazostatin B (0.370 μ M) and neocarazostatin C (0.390 μ M) were much lower than that of flunarizine (55.0 μ M) which is a brain protective reagent with free radical scavenging activity⁸⁾, and that of butylated hydroxytoluene (BHT; 4.90 μ M) which is a well known antioxidant. They are similar to that of carazostatin $(0.172 \,\mu\text{M})^{5}$.

Besides carazostatin and neocarazostatins, antiostatins⁹, which have a carbazole nucleus in each structure, were reported as free radical scavenging substances.

Our results suggest that neocarazostatins A, B and C may be useful for the alleviation of tissue damage due to generation of free radicals such as superoxide radical and subsequent peroxidative disintegration of cell membranes.

> Shinichiro Kato Kazutoshi Shindo Yoko Kataoka Yuji Yamagishi Junichiro Mochizuki

Pharmaceutical Laboratory, Kirin Brewery Co., Ltd., 3 Miyahara-cho, Takasaki-shi, Gunma 370-12, Japan

(Received March 13, 1991)

References

- HESS, M. L.; G. T. ROWE, M. CAPLAN, J. L. ROMSON & B. LUCCHESI: Identification of hydrogen peroxide and hydroxyl radicals as mediators of leukocyteinduced myocardial dysfunction. Limitation of infarct size with neutrophil inhibition and depletion. Adv. Myocardiol. 5: 159~175, 1985
- FLAMM, E. S.; H. B. DEMOPOULOS, M. L. SELIGMAN, R. G. POSER & J. RANSOHOFF: Free radicals in cerebral ischemia. Stroke 9: 445~447, 1978
- 3) PALINSKI, W.; M. E. ROSENFELD, H. S. YLA, G. C. GURTNER, S. S. SOCHER, S. W. BUTLER, S. PARTHASARATHY, T. E. CAREW, D. STEINBERG & J. L. WITZTUM: Low density lipoprotein undergoes oxidative modification *in vivo*. Proc. Natl. Acad. Sci. U.S.A. 86: 1372~1376, 1989
- CHEESEMAN, K. H. & L. G. FORNI: An investigation of the novel antiinflammatory agents ONO-3144 and MK-447. Studies on their potential antioxidant activity. Biochem. Pharmacol. 37: 4225~4233, 1988
- 5) KATO, S.; H. KAWAI, T. KAWASAKI, Y. TODA, T. URATA & Y. HAYAKAWA: Studies on free radical scavenging substances from microorganisms. I. Carazostatin, a new free radical scavenger produced by Streptomyces chromofuscus DC 118. J. Antibiotics 42: 1879~1881, 1989
- SAKANO, K. & S. NAKAMURA: New antibiotics, carbazomycins A and B. II. Structural elucidation. J. Antibiotics 33: 961~966, 1980
- NAID, T.; T. KITAHARA, M. KANEDA & S. NAKAMURA: Carbazomycins C, D, E and F, minor components

of the carbazomycin complex. J. Antibiotics 40: $157 \sim 164$, 1987

- KUBO, K.; I. YOSHITAKE, Y. KUMADA, K. SHUTO & N. NAKAMIZO: Radical scavenging action of flunarizine in rat brain *in vitro*. Arch. Int. Pharmacodyn. Ther. 272: 283~295, 1984
- 9) MO, C.-J.; K. SHIN-YA, K. FURIHATA, K. FURIHATA, A. SHIMAZU, Y. HAYAKAWA & H. SETO: Isolation and structural elucidation of antioxidative agents, antiostatins A₁ to A₄ and B₂ to B₅. J. Antibiotics 43: 1337~1340, 1990